Book
The book develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. With this goal in mind, the pace is lively, yet thorough. Basic notions of independence and conditional expectation are introduced relatively early on in the text, while conditional expectation is illustrated in detail in the context of martingales, Markov property and strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two highlights. The historic role of size-biasing is emphasized in the contexts of large deviations and in developments of Tauberian Theory. «
Boeklezers.nl is a network for social reading. We help readers discover new books and authors, and bring readers in contact with each other and with writers. Read more ».
There are no reviews for this book yet.